Information Rocket
Think of the information content as an object in orbit, which is function of mutation rate ("entropy field"), and replication rates ("extropy field"), and be inspired to create an information rocket.
The law of gravity implies that a body of mass M within a field of gravity, is attracted by force F, dependent on the strength and direction of the gravitational field. The force F manifests as change of velocity delta-v, and change of coordinate (delta-d). If, however, there is tangential motion of the velocity s, it may compensate for the orbital fall delta-d, and so satellites don't fall from the sky.
Suppose that the mass of "information object" (e.g., bit string of length N) is defined as Kolmogorov complexity ("shortest computer program (in a predetermined programming language) that produces the object as output").
Suppose that "information object" is in the field of entropy (e.g., "random noise/temperature"), that is defined as "information loss", and its integral (just like the integral of deceleration) with respect to time, results in loss of information (in number of bits erased), in a similar way that object of matter in the field of gravity results in object loss of speed, and eventually altitude (number of meters).
Suppose that "information object" is in the field of random replication (e.g., field that engenders random copies of its substrings), that is defined as "information gain", and its integral (just like integral of acceleration) with respect to time, results in gain of information (in number of bits created), in a way similar to how object of matter with an engine of propulsion results in gain of speed, and eventually altitude (number of meters).
Suppose the source of entropy is a ball in a direction perpendicular to the arrow of time (just like often sources of gravity are balls in the directions perpendicular to orbital satellite motions). E.g., assume that we are traveling in a temporal curvature, i.e., if the 5 billion years ago looks temporarily behind, perhaps 10 billion years ago is actually not directly behind, but at an angle like satellites traveling in a circular or elliptic orbits are, because a planet is a ball-like structure.
Suppose the source of entropy is of a fixed density (i.e., just like fixed mass of a massive object, this would be fixed entropy, i.e., temperature or thing that mutates bits) at a distance D of imaginary time (i.e., time perpendicular to the tangent of our time flow), where entropy is inversely proportional to the square distance to its source. (Note -- think of imaginary time as expressed in the imaginary part of real numbers, i.e., the one perpendicular to our timeline, e.g., if the universe has existed for 13.7 billion years, this represents the distance covered in Real part of it, while time perpendicular to normal years is unknown, it may be different, depending on what happened to the complexity of the universe, -- i.e., if it became more random, then it approached the entropy source, if it became more ordered, it may have increased the distance from it.).
With these assumptions, begin plotting an information rocket, to capture the bits in our minds, and let them escape that entropy.
Credits: Mindey of HalfBakery.
Keletas vertų HB komentarų:
[beanangel]: Tai įdomus būdas pažvelgti į dalykus, bet aš sumišęs. Kas nutiks, jei du entropijos rutulius padarysite atstumu vienas nuo kito ir sudarysite nesvarumo „laGrange“ tašką? Atrodo, kad tai vieta, kur galima saugoti duomenis, kai nėra entropijos. Reikalas tas, kad kažko suradimas tarp dviejų entropijos šaltinių neatrodo, kad tai išsaugotų duomenis. Viena iš galimybių yra ta, kad jei rutuliai būtų statomi vienas po kito, nesinchronizuojami tarpusavyje, o tada, kai vienas rutulys būtų šiek tiek patrauktas nuo 1 iki 0, kitas rutulys jį pastumtų nuo 0 iki 1. Reikalas yra tas, kad tada jie nebus entropijos rutuliai ir gali veikti tik tuos dalykus, kurie buvo 1 bitų dideli, arba, nepaisant to, daug bitų telpa ant paviršiaus tarp dviejų rutulių.
[2 bulvytės, drovūs iš laimingo patiekalo]: Taigi ... jei aš teisingai supratau, (nereikia lažintis dėl to, tu negalvoji), atsižvelgiant į daugelio pasaulių aiškinimą, kiekvienos galimybės „akimirka“ yra skaidrė begaliniame skaidrių demonstravime ir todėl turėtų būti įmanoma ... kapsuliuoti informaciją į burbulus, kuriuose nėra entropijos, kad išvengtumėte laiko praradimo?
Ar taip?
[Mindey]: Manau, kad taip, ir šie burbuliukai be entropijos gali būti laGrange taškai tarp visatų, esančių orbitoje aplink vienas kitą.
Taigi, kad ir koks informacijos šaltinis iš tikrųjų gali būti laikomas entropijos šaltiniu, atlikus tam tikrą tikimybės pasiskirstymą, ir jo patrauklumas gali būti laikomas „pasiskirstymo tempu“ (bet kuris informacijos šaltinis, esantis kito informacijos šaltinio įtakos diapazone, gali būti įtakotas tempti įsigyti to kito šaltinio modelį, panašų į tai, kaip [akultūracija] (https://en.wikipedia.org/wiki/Acculturation) vyksta socialinėmis aplinkybėmis).
„LaGrange“ taškai gali egzistuoti, kai yra pseudoatsitiktinių modelių trukdžių arba yra stabilūs šabloną sukuriantys tikimybės pasiskirstymo brėžiniai. (Taigi, kad vienas paskirstymas visada imtųsi, kitas paskirstomas visada, o mes visada galime turėti stabilų ribų modelį, didesnį nei 1 bitas.)
A few worthwhile comments, from HB:
[beanangel]: It is a fun way to look at things, but I am confused. What if you make two of the entropy balls at a distance to the other making a gravityless laGrange point? That would seem to be a place to store data absent entropy. The thing is, that locating something between two entropy sources does not seem like it would preserve data. One possibility is that if the balls were constructed one bit out of synchronization with each other and then when a bit was pulled from 1 to 0 by one of the balls, the other ball would push it from 0 to 1. The thing is though then they wouldn't be entropy balls and it might only work on things that were 1 bit big, or however many bits fit on a surface between the two balls.
[2 fries shy of a happy meal]: So... if I've got this straight, (no bets on that mind you), given the many worlds interpretation every 'instant' of every possibility is a slide in an infinite slide show and so it should be possible to... encapsulate information in entropy-less bubbles to escape being lost to the flow of time?
Is that right?
[Mindey]: I suppose so, and these entropy-less bubbles might be the laGrange points between the universes in orbit around each others.
So, whatever information source actually can be thought of entropy source, following a certain probability distribution, and it's attraction may be thought of a "distributional drag" (any information source within the influence range of another information source may be affect to drag to acquire the pattern of that other source, similar to how acculturation happens in social circumstances).
The LaGrange points may exist, when there is pseudo-random pattern interferences, or a stable pattern-engendering probability-distributional drags. (So that what one distribution tends to always take, another distribution tends to always give, and so we could have a stable boundary pattern between them, larger than 1 bit.)